0 Extension Dimension and C - Spaces

نویسنده

  • V. Valov
چکیده

Some generalizations of the classical Hurewicz formula are obtained for extension dimension and C-spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extension Dimension and C - Spaces

Some generalizations of the classical Hurewicz formula are obtained for extension dimension and C-spaces. A characterization of the class of metrizable spaces which are absolute neighborhood extensors for all metrizable C-spaces is also given.

متن کامل

Schwarz Reflection Principle in Complex Spaces of Dimension Two

§0. Introduction §1. Preliminaries, notation, and definitions §2. Basic approaches and preliminary facts §3. Extension across M 1 §4. Extension across C t §5. Completion of the proof of the Main Theorem— Assuming Theorem C §6. Statement of Theorem D and related notation §7. Extension of G(f, λ)—Proof of Theorem D(a) §8. Branches of F and Segre varieties §9. Branch locus of F and Segre varieties...

متن کامل

On Transfinite Extension of Asymptotic Dimension

We prove that a transfinite extension of asymptotic dimension asind is trivial. We introduce a transfinite extension of asymptotic dimension asdim and give an example of metric proper space which has transfinite infinite dimension. 0. Asymptotic dimension asdim of a metric space was defined by Gromov for studying asymptotic invariants of discrete groups [1]. This dimension can be considered as ...

متن کامل

One-point extensions of locally compact paracompact spaces

A space $Y$ is called an {em extension} of a space $X$, if $Y$ contains $X$ as a dense subspace. Two extensions of $X$ are said to be {em equivalent}, if there is a homeomorphism between them which fixes $X$ point-wise. For two (equivalence classes of) extensions $Y$ and $Y'$ of $X$ let $Yleq Y'$, if there is a continuous function of $Y'$ into $Y$ which fixes $X$ point-wise. An extension $Y$ ...

متن کامل

m at h . O A ] 1 9 Ju n 20 09 THE CUNTZ SEMIGROUP OF SOME SPACES OF DIMENSION AT MOST 2

The Cuntz semigroup is computed for spaces X of dimension at most 2 such thatˇH 2 (X, Z) = 0. This computation is then extended to spaces of dimension at most 2 such thatˇH 2 (X\{x}, Z) = 0 for all x ∈ X (e.g., any compact surface). It is also shown that for these two classes of spaces the Cuntz equivalence of countably generated Hilbert C*-modules (over C 0 (X)) amounts to their isomorphism.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009